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1 Executive Summary 
 
In this report, we describe our activities related to the private information retrieval (PIR) project. 
Our approach is based on the efficient implementations of the keyword-oblivious transfer 
cryptographic primitive, which allows a client and server to negotiate an exchange of data based 
on a keyword not learned by the server. Although no protocols exist that allow this primitive to 
scale to the magnitude needed by PIR, we utilize a semi-trusted third party, known as the isolated 
box, to meet the stated requirements. We implemented our approach in a realistic prototype, and 
evaluated its performance over a large (60 gigabyte) database and a set of queries provided by 
the MIT-LL test team. We found that our approach meets and exceeds the given performance 
requirements, with the majority of the performance penalty over plain MySQL processing 
coming from encryption and decryption, rather than keyword-oblivious transfer. 
 
2 Introduction 
 
The goals of the Automatic Privacy Protection program are to “develop and demonstrate 

practical, sound automated methods for the use of private information retrieval techniques in 

Intelligence Community systems, to automatically protect the private data of untargeted 

individuals, to assure the mandated policies are enforced, and to enable more effective 

interagency and intergovernmental data sharing for improved security.” To this end, we have 

pursued the development of efficient protocols for the Private Information Retrieval (PIR) 
problem: a client queries a large-scale database on a potentially adversarial server, and learns the 
correct answer to his query without leaking any information about it to the server. We have 
demonstrated formally that our PIR protocol meets the stated privacy needs of IARPA, and 
produced a working prototype. A team of independent testers from MIT-Lincoln Labs has 
verified that our prototype is functional and bug-free on a large test corpus, and that is exceeds 
IARPA's minimum performance requirements by more than an order of magnitude. Our 
prototype is even more efficient since the MIT-LL test was conducted. 
 
3 Technical Approach 
 
As per the rules of engagement (ROE), our system has three primary components: a client, a 
server, and an isolated box. 
 

• The server holds a plaintext database, consisting of an arbitrary number of rows 
organized according to a single schema. It communicates with the client and isolated box 
to provide responses to queries in an oblivious fashion.  
Assumptions: It is assumed that the server is honest-but-curious; it follows the protocol, 
and does not collude with the isolated box, but may attempt to learn more about the 
contents of the client’s queries by running additional algorithms over its view (messages 
exchanged during the protocol).  
Guarantees: The server learns no information from processing a query. The keyword 
oblivious transfer (KOT) protocol used to match a query guarantees that the server does 
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not learn either the field over which the query is performed, or the field value targeted by 
the query. Furthermore, after completing the protocol, the server has provided the client 
with the information needed to retrieve, in clear text, exactly the rows of the database 
corresponding to the query. 
 
• The client issues queries to the server, which take the form of a single attribute-value 
pair for each query. The attribute is an element of the schema, and the value is to be 
matched by each row in the query’s result set.  
Assumptions: It is assumed that the client is honest-but-curious, and does not adaptively 
select queries to learn more about the database than intended by the policy.  
Guarantees: Upon completing a query, the client learns the following information about 
the database: the number of rows matching its query, the plaintext of each matching row, 
and the size of the database. It does not learn the plaintext of any rows not matching its 
query, and there are no rows in the database that match its query for which it does not 
learn the plaintext. 
 
• The isolated box maintains an encrypted, permuted version of the server’s database. 

Intuitively, the isolated box serves as an oblivious storage point that allows our protocol 
to optimize the amount of network traffic transferred in the course of serving a query.  
Assumptions: It is assumed that the isolated box is honest-but-curious. It does not 
collude with the client to learn more about the server’s database, and it does not collude 

with the server to learn more about the client’s query.  
Guarantees: The isolated box can learn the approximate frequency with which an 
individual encrypted, permuted record of the database is accessed. Note that the isolated 
box does not learn the contents of the record and the frequency-of-access information is 
not perfect due to randomness introduced by the client.  
 

3.1 Definitions 

A database D is a set of records indexed by t attributes A1, . . . ,At, where we identify an 

attribute Ai with the set of attribute values it may take. Each record r of the database takes the 

form r = (x1, . . . , xt, y) with each xi in A denoting an attribute value, and y in {0, 1}l (for some 

length parameter l) being the payload. We assume a database contains no duplicate records. 

Queries are of the form (i, x) where 1 ≤ i ≤ t and x in Ai. The query q = (i, x) represents a 

request for all records whose value in the ith attribute is x. (For such a query, we call i the 

relevant attribute and x the keyword.) Formally, for the query q = (i, x) on a database D we 

define q(D) = {(x1, . . . , xt, y) in D | xi = x} as the set of records that match the query.  
 
3.2 Primitives 

We assume a semantically-secure encryption scheme E = (E, U) defined over (K, M, C), where 

K is the keyspace, M is the space of plaintexts, and C is the space of ciphertexts. Additionally, 
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we assume a cryptographically-secure hash function, and previously-established RSA credentials 
(N, e, d) for the server (N is the modulus, e is the public exponent, and d is the private key). 

Finally, we assume a keyword oblivious transfer (KOT) scheme OTk1,...,km, the security of which is 
based on the intractability of the one-more-RSA-inversion problem.  
 
3.3 PIR Protocol 

The protocol works in three stages. In the preprocessing stage, S initializes IB with information 

from D. In the second (query) stage, C, S, and IB communicate to serve a query from C. The 
preprocessing stage is performed once before any queries are served, and periodically when 
needed to ensure the privacy of D according to refresh parameter r. The second is performed 

each time C has a new query. In the third (refresh) stage, a decision is made as to whether the 

preprocessing stage is re-executed to gain additional privacy for D.  
 
• Preprocessing stage: 

1. S does the following once, before any queries are served: 

– Picks n random keys k1, . . . , kn from K. 

– Picks a random permutation s of n elements. 

– Prepares n ciphertexts c1, . . . , cn, where ci = Eki(Ri). 

– Sends the list c_1, . . . , c_n to the isolated box IB. 

– Initializes the refresh counter: cnt to 0. 
 
• Query stage: 

1. C and S perform a keyword oblivious transfer step. C’s input is (i, x) (the entire 

query), and S’s input is: 
 

{([i, xij], [Kij , Iij]) | 0 ≤ i < l, 0 ≤ j < |Ai|, xij in Ai} ∪ PD 

 

where 
 
Kij = {kh | rh = (xh,0, . . . , xij , . . . , xh,l)} 

 

and 
 
Iij = {s−1(h) | rh = (xh,0, . . . , xij , . . . , xh,l)} 

 



4 
 

and 
 
PD = {([Ri, xRi], [kRi , IRi]) | 0 ≤ i < l|D| −        

     xRi not in ARi} 

 

where R is a random sequence of integers between 0 and l, k is a random sequence of 

elements from K, and I is a random sequence of sets of database indices. Here the 

quantity l|D| −        
    refers to the number of additional cells that must be added to 

hide the distinct number of attribute-value pairs in the database. Note the assumption that 
Kij , Iij , kRi , and IRi are padded to the same length. The condition xRi not in ARi is to ensure 
that the entries added for padding will never be returned as the result of the KOT 
protocol. The purpose of including PD in the server’s input is to prevent leaking the 
number of distinct attribute-value pairs in the database. At the end of the KOT protocol, 
C receives [Kij , Iij] such that (i, xij) = (i, x). This is achieved using the keyword OT 
scheme.  
 

2. C asks IB for the encrypted rows listed in Iij . 
 
3. IB sends C the ciphertexts indexed by Iij , {cs(s− 1(h)) | s− 1(h) in Iij} 
 
4. C can now use the elements of Kij to decrypt those returned by IB, thus attaining: 

{(x1, . . . , xt, y) in D | xi = x} 

 

5. S updates the refresh counter: cnt   cnt + 1. 
 
• Refresh stage: 

1. If cnt > r, then set cnt   0 and re-execute the preprocessing stage. 

3.4 Security Properties 

It can be shown that our protocol does not reveal to the server: (1) the attribute over which the 

query is performed, (2) the value of the attribute queried for, or (3) the rows of the database 

which are accessed to the server. (1) and (2) follow directly from the guarantees of the KOT 
protocol that we use, and as such are subject to the same assumptions as that protocol (namely, 
intractability of the one-more-RSA-inversion problem). The third property follows from the fact 
that rows are only retrieved (during query processing) from the isolated box. Similarly for the 
client, this protocol does not leak any information aside from the intended result – the rows of 
the database that match the client’s query. This property follows from the guarantees of the KOT  
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Figure 1: Experimental Setup. (Courtesy of MIT-LL) 
 
protocol, as well as the security of the encryption scheme E. As such, privacy from an honest-
but-curious client is subject to the same conditions on security as the KOT protocol. The privacy 
of D from the isolated box follows from the security of our encryption scheme E. However, the 
isolated box may learn the frequency with which the client accesses permuted rows of the 
database. Because the rows are permuted randomly before being sent to the isolated box, an 
adversary would need external (semantic) information in combination with this frequency 
information to deduce further information about the contents of the database. Furthermore, the 
adversarial utility of this information can be arbitrarily reduced by requiring the server to 
periodically re-send the rows to the isolated box using a fresh permutation. This feature is 
controlled by the parameter r; low values of r cause the server to enter the refresh phase more 
often. The more often this happens, the less useful the information learned by the isolated box 
becomes. However, each such refresh comes at the cost of substantial network overhead (for 
large databases), in addition to negative cache effects. This gives the protocol a tunable 
parameter: the refresh frequency offers various degrees of security for a quantifiable tradeoff in 
efficiency.  
 
4 Lessons Learned 
 
We feel that one noteworthy aspect of our work in private information retrieval is that we were 
able to scale to the requirements given by IARPA without developing any new cryptographic 
primitives (in fact, as we discuss in Section 2, the performance of our protocol outperformed the 
project goals by more than an order of magnitude). Recall that we rely on symmetric-key 
cryptography to efficiently hide data as it travels over un-trusted channels, keyword oblivious-
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transfer to hide the client’s query from the server while retrieving the correct set of rows, and 

RSA to blind data within the keyword oblivious-transfer protocol. Particularly relevant is 
keyword oblivious-transfer: the high-level functionality of this primitive parallels that of private 
information retrieval so closely that implementing the needed functionality is merely a matter of 
scale. In other words, one could use keyword-oblivious transfer to implement private information 
retrieval, without further modification, were its performance at the scale mandated by IARPA 
acceptable. Our insight was to use keyword oblivious-transfer only over data that indexes 
relevant entries in the large database; when the client and server finish performing keyword 
oblivious-transfer, the client can use this information to ask the isolated box for the full 
information required to complete the private information retrieval protocol. 
 
In one sense, this suggests that all of the mathematical tools needed to realize the demanding 
functionality of private information retrieval have existed for years. We see this as further 
evidence of the need for a new set of tools that compile privacy-sensitive programs from high-
level specifications to low-level primitives with rigorously-proven properties, such as keyword-
oblivious transfer. This will allow applications which have seemingly novel privacy 
requirements, such as private information retrieval, to benefit from principles developed in the 
software engineering community, such as code reuse, abstraction reuse, and low-level code 
generation. In the context of privacy-preserving applications, these principles have strong 
implications for correctness, as code/abstraction reuse oftentimes allow correctness proofs to be 
reused without loss of rigor. Removing the need to manually develop new correctness proofs for 
each protocol from the ground up is a major advantage. We see this as a primary advantage over 
other teams’ solutions: re-using existing primitives to meet project requirements increased the 
clarity of our protocol description and correctness proof. 
 
Our original proposal was based on the concept of an optimizing compiler for privacy-preserving 
applications. We view our activities with the private information retrieval protocol presented 
above as a case study in this larger effort. This project has provided us with a realistic 
application, corresponding evaluation dataset, and third-party testing. Moving forward, we will 
leverage this to incorporate the abstractions and functionality used to complete the project into 
such a compiler. 
 
5 Implementation and Performance Evaluation 
 
Implementation 
 
We implemented our protocol in 10,501 lines of C++ source code for Linux. We use SQLite for 
back-end database processing, as it is lightweight, easy to use, and highly performant in the 
single-access, read-only setting. Our client prototype utilizes multiple threads to avoid network 
and encryption-related bottlenecks. One thread constantly transfers data from the isolated box 
over the network, and the other thread continually decrypts and displays the data. For most 
cryptographic primitives, we utilized the OpenSSL library, including 256-bit AES to store an 
encrypted copy of the database on the IB, and to generate secure pseudorandom numbers for key 
data and database row permutations. We wrote our own implementation of the Kurosawa-Ogata 
keyword oblivious transfer protocol, using 1024-bit RSA keys. 
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Experimental Setup 
 
We evaluated the performance of our prototype experimentally. We loaded and ran the server 
and isolated box components onto two Dell PowerEdge servers, matching the project 
specification. The client was run on a Dell Inspiron 1545 matching the project specification. All 
communications took place over a local gigabit ethernet network. This setup is depicted in 
Figure 1. 
 
Dataset and Benchmarks 
 
The data that was used to perform the evaluation was provided by the MIT-Lincoln Labs test 
team. It consists of two components: 

 A synthetic database with a schema corresponding to personnel records for a hypothetical 
company. The schema has 50 components arranged in a flat hierarchy, and 100,000 
records corresponding to non-existent citizens with characteristics that fit the distribution 
found in 2000 census data. The total size of this database is approximately 60 gigabytes. 

 514 database queries arranged in 16 distinct test cases. These queries correspond to 
182,348 database records, selected to test the full range of prototype operation. 

 
Each test query consists of a SQL SELECT statement over a single attribute, with an equality 
constraint on the value of the attribute. For example, 
  
 SELECT * FROM people WHERE state = ‘NY’ 

 

To test different aspects of prototype performance, such as the ability to quickly begin returning 
data for a large query, the query attribute is varied to account for the characteristics of the 
underlying database. For example, querying sparse attributes allows the lookup performance of 
the prototype to be evaluated, without excess noise due to large result set transfer.  
 
On average, test queries produce results with less than 10% of the records in the database. Test 
queries were broken into four categories: 

 Tiny queries: fewer than 10 records. 
 Small queries: between 10 and 1000 records. 
 Medium queries: between 1000 and 10000 records. 
 Large queries: greater than 10000 records. 

The total benchmark suite contained 304 tiny queries, 224 small queries, 32 medium queries, and 
4 large queries. 
 
 
Metrics and Goals 
 
The experiments tested four aspects of the implementation: correctness, query compilation time, 
index lookup and search time, and retrieval, decryption, and display time. 
 

 Correctness: Because the requirements of PIR are stricter than those for traditional 
networked data retrieval, it is conceivable that the functionality of a PIR system might 
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differ from a traditional system. For each test in the benchmark suite, we ran an identical 
test in a baseline MySQL installation to determine a baseline truth. We then checked the 
contents of each result against the baseline MySQL results, checking that both: 

1. The PIR prototype returns the same number of records as the MySQL installation. 
2. Each byte of each decrypted record returned by the PIR prototype matches the 

corresponding byte in the corresponding row returned by the MySQL installation. 
 Client Query Compilation (CQC) Time: This corresponds to the period of time needed 

on the client to encode and send a query to the server. 
 Index Lookup and Search (ILS) Time: This corresponds to the time needed for the 

client, server, and isolated box to negotiate the PIR protocol. This begins when the 
client’s packet is first received by the server, and ends when the server’s first result 

packet is sent. 
 Retrieval, Decryption, and Display (RDD) Time: This corresponds to the time needed 

for the server to transfer all results to the client, as well as that needed by the client to 
decrypt and display the results. This period begins when the client outputs the first byte 
of the query result, and ends when all results have been displayed. 
 

Each of these metrics is evaluated for each test query in the benchmark suite. 
 
6 Results 
 
Before we present the details of our results, we note that IARPA presented a number of 
performance requirements that the PIR prototype must meet. 
 

1. The average index lookup and search time must be less than 60 seconds. 
2. The average retrieval, decryption and display time of the PIR system must be no more 

than a factor of 100 more expensive than a corresponding baseline, non-PIR MySQL 
system. 

3. The PIR system must take less than 24 hours to bring the entire 60 gigabyte test database 
online, ready to answer queries. 
 

We are happy to report that our prototype meets and exceeds these requirements by substantial 
margins. To summarize, our results demonstrate that PIR can be made both practical and 
efficient. In particular: 

 Bringing server and isolated box online is relatively inexpensive. For the 60 gigabyte 
dataset, it takes approximately three hours to bring all data online, and come to a ready 
state for query processing. There are two components to this cost: the transfer of 
permuted rows between the server and isolated box (~2.5 hours), and pre-computing the 
keyword oblivious transfer dictionary (~30 minutes). 

 The overhead for performing keyword oblivious transfer is effectively constant, and 
nearly negligible. On average, for the full 60 gigabyte dataset, KOT required 4 seconds. 
This is significant, as performing KOT constitutes nearly all overhead required by PIR 
over standard query processing. 

 Overall PIR query processing time is <2x the standard MySQL base time. For 
sufficiently large result sets, nearly all overhead is due to decryption time. This time can 
be reduced further with increased parallelism and faster encryption primitives. 
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 Our prototype returned correct results for all tests: both the number of records and the 
contents of each record matches that returned by the baseline MySQL installation. 
 

A sampling of our results is displayed in Figure 2, which displays the query processing time for 
our PIR prototype versus the MySQL base time over tests from each category. The 
“unoptimized” curve corresponds to our prototype with no parallelism, and the “optimized” 

curve corresponds to the implementation with one additional processing thread. 
 

 
Figure 2: PIR Time vs. MySQL base time 

 
We present more detailed results in the remainder of this section. In each plot, when a curve is 
fitted to the data, it is done so using least-squares regression. The coefficient of determination for 
each curve is labeled R^2. This coefficient takes values between 0 and 1; values near 1 indicate 
an excellent fit, and values near 0 indicate a weak correlation between the curve and data. 
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Tiny Queries 

The tiny test set consists of 304 queries that return less than ten rows from the test database. Our 
results are given in four plots below. The first plot corresponds to the total query response time; 
note that the total query response time for our prototype is greater than that for the default 
MySQL installation. The second plot shows the client query compilation time. For tiny queries, 
the query compilation time of our prototype consumes nearly all of the total query response time. 
This reflects the fact that the time required to complete keyword oblivious-transfer is 
independent of the size of the query result. So, while the results to not take long to transmit from 
the isolated box to the server (reflected in the final plot), the query compilation time is as 
expensive as it would be for larger queries. 
 
While it may seem as though this result implies that our protocol is not well-suited for tiny 
queries, observe that the total query response time is still small. We feel that the tradeoff is 
justified, given the scale of the data involved. 
 
Note that the index lookup and search plot indicates no time needed by our prototype. This is due 
to the fact that client query compilation and index lookup or search correspond to the same 
portion of our protocol; the entire time is accounted for in the client query compilation data. 
 

 

 
 

Figure 3: Response Time for Tiny Queries 
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Small Queries 

 

The small test set consists of 224 queries that return between ten and 1000 records from the test 
database. Our results are given in four plots below. The first plot corresponds to the total query 
response time; note that the total query response time for our prototype is greater than that for the 
default MySQL installation, but only by a constant factor. This result is due to the need to 
decrypt results sent from the isolated box, and can be minimized to an arbitrary degree with 
increased parallelism and faster hardware. The second plot shows the client query compilation 
time. Note that the query compilation time for small queries falls in the same range as for tiny 
queries. This reflects the fact that keyword oblivious transfer time is independent of the query 
result size. Rather, it scales linearly in the number of records in the database, and the amount of 
value-repetition among the entries. 
 
 

 

 
 

Figure 4: Response Time for Small Queries 
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Medium Queries 

 

The medium test set consists of 32 queries that return between 1000 and 10 000 records from the 
test database. Our results are given in four plots below. The first plot corresponds to the total 
query response time. As in the previous set of tests cases, our prototype’s total query response 

time differs from the baseline MySQL time by a constant factor. This effect can be minimized to 
an arbitrary degree using the same methods discussed previously. The second plot shows the 
client query compilation time. Note that the query compilation time for small queries falls in the 
same range as for tiny queries and small. This reflects the fact that keyword oblivious transfer 
time is independent of the query result size. However, for result sets of this size, query 
compilation corresponds to a much smaller portion of the overall response time, likewise 
mirrored in the striking similarities between the first and fourth plots below. At this point, the 
time needed to complete the keyword oblivious-transfer protocol is effectively marginalized by 
the time needed to transfer and decrypt the large amount of result data. 
 
 

 

 
 

Figure 5: Response Time for Medium Queries 
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Large Queries 

 

The large test set consists of 4 queries that return more than 10 000 records from the test 
database. Recall that the entire test database is 60 gigabytes, so each query in the large set 
corresponds to between five and ten gigabytes of response data. Our results are given in four 
plots below. The first plot corresponds to the total query response time. As in the previous set of 
tests cases, our prototype’s total query response time differs from the baseline MySQL time by a 

constant factor. The second plot shows the client query compilation time. Note that the curve that 
fits these data points indicates a correlation between result size and query compilation time. This 
is almost surely a spurious effect of the small number of sample points; there is no reason to 
believe that query compilation time should differ at all from the other test sets. As with the 
medium tests, query compilation corresponds to a small portion of the overall response time.  
 
 

 

 
 

Figure 6: Response Time for Large Queries 
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7 Activities 
 
We performed the following activities throughout the course of this project. 
 
1. Developed initial protocol, which was based on pre-computing all possible database views 

for a particular attribute, and transferring them to the isolated box on-demand. This gives the 
isolated box a coarser view of database accesses, but is not nearly as performant as the 
approach discussed above. 

2. Modified initial protocol to work over rows rather than views, to arrive at the approach 
discussed above. 

3. Implemented the primitives needed by the protocol, including the Kurosawa-Ogata keyword-
oblivious transfer protocol, the RSA algorithm, and the needed operations over large 
integers. 

4. Implemented a prototype of the client, server, and isolated box in C++. 
5. Integrated the prototype with the MIT-LL test harness. 
6. Installed and configured the hardware infrastructure needed to run the performance 

evaluation. 
 
 
8 Conclusion 
 
We demonstrated an efficient protocol to perform keyword search in a privacy-preserving way. It 
was a very rewarding experience for our team. However, we want to pursue several future 
directions for this project. On the fundamentals side we want to explore support for more 
expressive queries. We want to see whether there are even more opportunities for making the 
protocol more efficient. University of Wisconsin has a very strong database group. We plan to 
collaborate with the database group to find more applications of the PIR technology. We are very 
excited about further opportunities on this project. 
 
9 Acronyms 
 
AES – Advanced Encryption System 
CQC – Client Query Compilation 
IARPA – Intelligence Advance Research Projects Agency 
ILS – Index, Lookup and Search 
KOT – Keyword Oblivious Transfer 
MIT-LL – Massachusetts Institute of Technology Lincoln Labs 
PIR – Private Information Retrieval 
RSA - Rivest, Shamir and Adleman 
SSL – Secure Socket Layer 
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Appendix A: SSH Password Authentication Using Secure Function Evaluation 

 
The following is an unpublished manuscript containing research done under the PIR contract. 
The authors are Louis Kruger, Matthew Fredrikson, Somesh Jha, and Vitaly Shmatikov, all 
supported by the contract for the duration of this research. 
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